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The causal behaviour of field theories with non-localizable inter­
actions of the Kristensen-Moller type is discussed in the perturbation 
approximation, with particular attention to interactions involving only 
particles with time-like momentum vectors. Causal behaviour is under­
stood to imply that all observable particles of positive energy are pro­
pagated at a velocity less than the velocity of light. It is shown that 
the causal behaviour of the non-local interaction theories is determined 
both by the location of the singularities of the propagation function, 
and by the continuity of the various derivatives of the form function. 
It is further demonstrated that, by choosing these derivatives to be 
continuous in sufficiently high orders, the probability of observing 
signals propagating with a velocity greater than that of light may be 
made to decrease more rapidly than any arbitrary inverse power of 
the distance between the points at which the signal is observed. The 
relation of this work to other treatments of causality is discussed.

1. Introduction.

onsiderable interest has recently been attached to discussions
of field theories involving non-local interaction, that is, field 

theories in which the interaction term in the Lagrangian involves 
the field variables at different points in space and time. Following 
Kristensen and Møller'1', this interaction term may be 
written as1

Lint = — d*x'  dW d*x'"  xp+ (.r') 0 (x-") (1.1 )

in which 0 is the form factor of the interaction and
will in general be a product of a matrix operator and a function

1 We shall use the notation F (123) for F(xf^,x^,x^). The adjoint field is 
denoted by ip+, and may be taken as ip+ = i/>*y i, with ip*  the Hermitian con­
jugate to ip. Further, the inner product of two four-vectors is indicated by 
a-b = a b = a b -a°b°.

1*  
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of coordinates F (x'x"x"'). Utilizing the various invariance con­
ditions which may be placed on F, we may expand it in momentum 
space as

F(Vx"x") = (23i)-8U4'irf4'3G('A) I

X exp i [I, (x' — .r") + 13 (x" - x")J,

where G is a function only of Zf, Z3, and (Zx + Z3)2.
Of especial importance to any investigation of a theory of this 

type arc the questions, first, whether such a generalization of the 
usual theory can bring about the desired convergence of integrals 
representing matrix elements, and second, if it can do this, what 
effects this generalization would have upon such properties of 
the theory as its causal behaviour. Bloch(2) and Kristensen(3) 
have shown that, in order to gain convergence to all orders of 
the coupling constant, it is sufficient (and probably necessary) 
to require that G (ZXZ3) vanish if any of the vectors Zx, l3 or 
Zx + I3 is space-like. This is a rather serious restriction; in fact, 
it eliminates the possibility of obtaining the usual local theory as 
a limiting case. It has been felt that such a restriction may per­
haps lead to acausal behaviour for the particles described by 
the theory. It is the purpose of this paper to investigate in some 
detail the commensurability of such an assumption with the 
causality requirement, and to show in what sense we may say 
that causality is preserved. A theory will be said to exhibit causal 
behaviour if it predicts that all observable signals or particles 
of positive energy are propagated only in a forward direction in 
space-time, and at a velocity equal to or less than the velocity 
of light.

Discussions of the application of the requirement of causality 
to the non-local interaction are not new, of course. For example, 
Bloch(2), and later Chrétien and Peierls(4), have determ­
ined what properties the form function must possess in order 
that the interaction be limited to a small region in space and time. 
In substance, their result is that, if the form function in mo­
mentum space, G (ZJ3), is sufficiently smooth, then the interaction 
involves essentially only field variables at points close to each 
other. Smoothness here implies the continuity of the various 
higher derivatives of G with respect to I2, Zf, and (Zi — Z3)2. This
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question is, however, somewhat different from that discussed by 
Fierz^5) in his analysis of the causal behaviour of the local 
theory of quantum electrodynamics. It was pointed out there 
that, for the causality requirement to make sense, it is necessary 
to discuss only observable signals. This means that the predicted 
matrix element for some measuring process as a whole must be 
examined. It was shown that, if a particle (specifically, a photon) 
of positive energy is absorbed at an approximate distance r from 
its point of creation, such absorption must take place at a time 
at least r/c later than its time of emission. It is apparent that 
this discussion does not correspond to that given by Bloch or 
Chretien and Peierls. A simple demonstration of this discrepancy 
is provided by a local theory in which the Feynman or causal 
Green’s function AF = zl1— 2 i A is replaced by its complex 
conjugate AF. This would certainly satisfy the conditions of Bloch, 
and Chrétien and Peierls, since the interaction would only involve 
the field variables at the same point. Nevertheless, such a theory 
would not satisfy the Fierz condition, which we might call 
“causality in the large”, because the absorption of a particle of 
positive energy would actually occur before its emission. In the 
course of our examination of the properties of the restricted non­
local interaction, we shall find the distinction between these con­
ditions appearing in a rather natural way.

Perhaps it should be mentioned that this work is rather 
distinct from that of van Kampen(6) and others, who have 
established rather general conditions on the S-matrix for scattering 
in classical and first-quantized theories. Their interest is mainly 
concentrated upon determining the properties for cross sections 
and bound states following from conditions which are, in a 
sense, weaker than those above, but which must be followed 
rigorously. This involves a somewhat different emphasis, re­
sulting from a different point of view concerning the causality 
condition.

Essentially, it is possible to start from a given set of properties, 
including, say, some sort of causality condition, and from these 
to deduce certain characteristics which must be possessed by 
any theory containing these properties. This is the approach of 
van Kampen, mentioned above. On the other hand, it is also 
possible to begin with a definite theory or class of theories, and 
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to deduce to what extent this theory possesses certain desired 
properties. This is the approach which has been used by Fierz, 
and which will be adopted here. It contains one definite advantage; 
namely, if we begin with a causality condition, and use this to 
restrict the form of the theory, then we must, of course, use a 
condition which can be expressed in specific terms, and which 
must be adhered to rigorously. However, it has been pointed 
out previously that such a condition in a quantum theory will 
tend to be rather weak, primarily because of the inability to 
assign precise values of the momentum and position to a particle 
at two different times. Therefore, it seems better for our purposes 
to begin with that specific theory in which we are interested, 
and to examine its predictions for those processes which will 
exhibit most clearly its causal or acausal nature. These pro­
cesses are just those which describe physical methods for meas­
uring the velocity of propagation of a particle. The more general 
approach, while more difficult in application, might be expected 
to throw considerable light on the structure of S-matrix theory, 
particularly if the same sort of causality condition as that used 
here could be formulated in a more definite manner. One of 
(he problems involved in such a treatment would be the construc­
tion of certain types of localized states. We shall attempt to avoid 
such difficult questions by the use of a more intuitive approach.

Several basic assumptions and limitations will be introduced 
here in order to simplify the discussion. The most important of 
these involves the application of perturbation theory to the cal­
culation of matrix elements involved in determining the causal 
behaviour. In particular, we shall assume that, if the results of 
the lowest order perturbation calculation indicate a causal be­
haviour, such behaviour will carry over into the higher orders. 
Causality will be seen to be intimately connected with the form 
of a certain product of the Green’s function AF and form functions 
F(x'x"x"'). In the higher orders, the same product is merely 
repeated a number of times. If this product is of the proper 
form to ensure causality for the first non-vanishing term in the 
expansion, we may expect that the higher orders will not in­
troduce difficulties. Wherever possible, we shall attempt to in­
dicate what modifications are introduced in the higher orders. 
The entire structure of our analysis might not make any sense 
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if the perturbation method itself is not valid, of course. Such 
questions, while important, are not to be discussed here.

For convenience, only two types of particles will be con­
sidered, one possessing charge conjugate states and spin one- 
half, and one Majorana neutral particle. The fields describing 
the former will be denoted by 7; and and (p will be used for 
the field of the neutral particle. Both the neutral particle and 
the coupling will be assumed to be scalar. At times we may find 
it convenient, for giving a physical picture of the processes con­
sidered, to refer to these particles as nucleons and mesons.

Finally, we shall only be concerned with the causal or acausal 
behaviour of the field; that is, we shall only require that the 
neutral particle have a velocity less than that of light. This makes 
it possible to treat the ip and ip+ fields non-relativistically if 
desirable, which can simplify the discussion. It is obvious, of 
course, that a similar treatment of the causality properties of 
the ip and ip+ fields could be given, with essentially 110 modi­
fication of the procedure.

2. Limitations on the Causality Condition.

As indicated previously, it is extremely difficult to give an 
exact criterion for causal behaviour of a theory, primarily due 
to the limitations imposed on the measuring process by the 
quantum nature of the theory. We shall now examine this 
limitation more closely. Essentially two types of measurements 
are involved in determining causal behaviour as defined pre­
viously. These are: the determination of the location of the 
particle at two different points in space-time, and the measure­
ment of the sign of the energy of the particle. If the theory is 
second quantized, then of course the points of position measure­
ment are just the points at which the creation and destruction 
of the particle in the given state occur.

It is rather clear that the operator measuring the position of 
a particle, the eigenfunctions of which are the so-called localized 
states of the particle, does not commute with the energy operator. 
This, however, is too much to expect; all we really would need 
for a precise formulation of the causality condition is that the 
position operator commute with the operator determining thé 
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sign of the particle energy. Expressed in other words, we would 
require that the localized states of the system he composed only 
of positive (or only of negative) energy components. That this 
should be so seems extremely unlikely, and we therefore expect 
that the position of the particle, or its points of creation and 
destruction, may only be defined to within a certain distance. 
This distance may be taken to be of the order of the Compton 
wavelength of the particle, h/mc, which is the position uncer­
tainty we would obtain using states which arc described by the 
usual minimum wave packets familiar in ordinary quantum 
mechanics. Furthermore, we should also expect to be able to 
determine the sign of the energy of the particle with only a certain 
probability; this probability may be large, but not equal to one. 
W ith these limitations, our statement of causal behaviour be­
comes as follows: to the extent to which the energy of the particle 
is known to be positive, and to the extent to which its points 
of creation and destruction may be determined, these points must 
be separated by a time-like distance, and the point of destruction 
must occur later than that of creation. At first glance, we might 
be tempted to require also that the particle energy be greater 
than me2, i.e., that the particle be real, not virtual. On the other 
hand, the existence of an appreciable probability for finding a 
virtual particle propagating at a velocity greater than c at a 
distance from its point of creation large compared to h/mc can 
also be considered to be a violation of causality. It seems reason­
able, then, to include virtual particles in our discussion. This 
question does not arise in the usual local theory, for there we 
know that the range of the interaction produced by the exchange 
of a virtual particle of mass m is of the order of h/mc, no larger 
than the fundamental uncertainty in the position measurement. 
There appears to be no reason to expect this range to be any 
shorter in a non-local theory. Conversely, we also may regard 
this as a reason for not choosing our position measurement 
more accurate than h/mc, for the existence of virtual particles 
prevents any more accurate formulation of the causality con­
dition.

With these considerations in mind, we now may give a 
general description of the type of process the investigation of 
which should prove most interesting and decisive with regard 
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to causality. We might expect such processes to be the simplest 
ones possible which create and subsequently destroy a meson; 
that is, the interaction ol‘ two nucleons by means of the meson 
field. The process should provide some method of determining 
where and when the meson is created and destroyed; this may 
be done by determining where the nucleons which emit and 
absorb the meson change state. Furthermore, the energy of the 
meson may be determined from a knowledge of the energy 
change of the nucleon involved in its emission. These require­
ments mean that the nucleon states must not be described by 
momentum eigenfunctions, but rather by some sort of wave 
packets, which also permit a certain localization in space and 
time. In principle, from a knowledge of the nucleon states in 
the infinite past and in the infinite future, we may deduce the 
properties of the particle field which transmits the interaction 
between the two nucleons. It docs not matter whether we assume 
such interaction occurs by the exchange of one or many mesons; 
in either case the causality condition should be satisfied.

It also should be noted that, if the initial and final states of 
the nucleons are chosen to be free particle states, i.e., some 
superposition of plane waves, then an additional interaction 
with the meson or some other field must be introduced to provide 
long range (greater than h/mc) interaction between the nucleons. 
This is, of course, a consequence of the conservation of energy 
and momentum, which forbids the absorption or emission by 
free nucleons of any save virtual mesons. This additional inter­
action may either be with a prescribed external field, or else 
with the meson field or some other quantized field. In the latter 
case, the additional field also should be described by states 
which are represented by wave packets. In the next section, we 
shall present two types of processes which can throw light on 
the causal behaviour of the theory, and show that essentially 
the same answer would be obtained in an analysis of either 
of them.

3. Measuring Processes.

Whether or not a theory is causal can be determined from the 
predictions it makes for various special processes. In this section, 
we shall consider several representative examples of such pro- 
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cesses, which are of the general type discussed previously. We 
shall show that both of these “Gedanken” experiments lead to 
a condition essentially the same as that of Fierz.

In the interest of simplicity, we may begin with a case in 
which two nucleons in different potential wells interact by means 
of the intermediate meson field, the dropping of one nucleon 
from its initial state to a lower level causing the excitation of 
the system containing the other nucleon to a higher state. Since 
the treatment of bound states in a field-theoretical manner would 
introduce several complications into our discussion, we shall 
assume that the nucleons in the potential well are not described 
by a quantized field, but merely by simple Schrödinger wave 
functions. This means that we may not use a three-point form 
function, but rather consider only a non-local interaction be­
tween the meson field and a source density, represented by the 
nucleon wave functions. The corresponding problem in electro­
dynamics involves the exchange of excitation of two different 
atoms by means of the radiation field. The approximation of 
treating the nucleons by Schrödinger functions is somewhat 
better than the familiar semi-classical radiation theory, in that 
the possibility of virtual-pair formation by the meson field is 
contained in our discussion. Effects corresponding to the radiative 
corrections in emission and absorption are not included, however.

The use of a potential well serves to localize the emission and 
absorption of the meson in space, but not in lime. In order also 
to establish a time for these events, we may consider that the 
population of the nucleon states varies as a result of other un­
specified interactions with other particles. This changing po­
pulation results in a time-dependent normalization for the 
particles in each potential well:

¡¡ (Px y*  (X, /) y>(x, t) = \f (f) I2, (3.1)

and might be described by introducing an additional imaginary 
potential V' — iti [In /’(/)]' into the Schrödinger equation, which 
becomes

[H«+ V' (i)lv(O = a.^,

/yo = __ p2 + V(x).
(3-2)



Nr. 2 11

In particular, the function /’(/) should be appreciably different 
from zero only over a certain time interval.

Consider first a potential well with center at the origin. If 
the potential V (x) is chosen to be spherically symmetric, then 
the solutions to (3.2) may be written as

Vnlm - fn (0 «n (?) (& > <P) exP - Z (Ejh) I, (3.3)

in which the utl are the normalized radial parts of the energy 
eigenfunctions of the unperturbed Hamiltonian H°. The Tzm are 
chosen to be normalized so that their square integral over all 
angles is unity.

Now we return to our original problem of the two nucleons. 
Consider two different potential wells, one with center at x, and 
with particle states which have a maximum amplitude at time 
.r°, and the other with a center al y, and a maximum state am­
plitude at time z/°. We denote the wave functions of the nucleon 
in the first well by y»1, and those of the nucleon in the second 
well by y2. Then the S-matrix element for a transition in which 
the nucleon in the first well goes from state nlm to n'l'm', and 
nucleon 2 goes from n’l'm' to nlm, will be proportional to the 
i ntegral

I y) = jj d4.r'd4J// Vnlm (I/') Fn'Z'm' (?/') I 

X (U' — Vn’l’m’ (æ') V’nlm (x')- I

Here, ÂF (y' — .r') is some sort of Green’s function describing the 
propagation of the meson from the point x' to the point ij'. Il 
may be assumed to contain the effects of a non-local interaction 
between the meson field and the nucleon source density. To the 
lowest order in the coupling constant for the meson-nucleon 
interaction, dF (y'— x') becomes just a non-local modification 
of the usual local Green’s function; we write it as

Jf(x) = (2jt) 2j¡d4Á-z1p(Á-)|y (Å-2)|2 exp (3.5)

with y (Á’2) some form factor in momentum space. 
Obviously, we have

(æ) = Vnbn O' ~ æ) ,

V’nlm (i/ ) Vnlm (U >
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where yniin (x) is the nlin wave function for a particle in a state 
centered about the origin in both space and time. As usual, it 
is most convenient to work in momentum space. We prefer 
spherical polar to rectangular coordinates, both for convenience 
in handling spherical potentials and, more important, because 
the causality condition only involves the separation of events, 
not their relative angular orientation. Accordingly, we also in­
troduce spherical coordinates in momentum space, writing the 
product of two wave functions as

and expanding the function ZlF (À) as

¿F (*)  = Z,m Y'" <Pk) ^Fln, (k, k°).

Substituting (3.7) and (3.8) in (3.4), and using (3.5), we finally 
obtain

AO y) = 16^’2?

- ik° (.T» - y°) e (k, A") J„„, (A-, A«)

with

g (A, A«) = c (A»)*  : (A») tfa. (k)*  I y (A2 - A«2)|2 

r = I x — J I.
(3.10)

The coefficients C appearing in (3.7) and (3.10) are defined by
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■t_.ni* vm'
1 l

\rM' \rM" \rm"
ÏL' 1L" 1 l”

__ V M V.W
- 2^LMhL'L"l-,L *l >

(3.11)

and the summation in (3.9) extends over L, L', L", I", M, M', 
1 ffr 11M , m .

If the function f (/) „which limits the wave function in time 
is not chosen to decrease to zero too sharply, then q (k, k°) will 
have a strong maximum at k° = (En>— E^/hc. To see this, we 
need only recognize that C (P) = C [P + (En— En^)/hc], where 
C(P) is the Fourier integral transform of H the
energy of the state n, En, is much greater than En-, then we may 
consider that a meson of positive energy----- hk°/c is created
at or about x, and destroyed near y. Therefore, the causality 
condition requires that, if q (k, k°) is different from zero essentially 
only for k° < 0, ILM (.r — y) should be different from zero only if 
y is essentially within or on the forward light cone of x. This 
is just the sort of condition Ficrz obtains.

Of course, the better we define the time of the meson creation 
or destruction, the less well-defined is the energy —hEjc. The 
extent of the uncertainty in our condition may be estimated by 
choosing a particular form for f (t), for example, a Gaussian 
in time:

f (/) = exp —|y2/2. (3.12)

Then, £ (A’°) becomes

f 0°) = C/s 7) exp-i7-2 + (£„ - E„.)Mc]2, (3.13)

which is also a Gaussian function. Assuming that En— En> is 
much greater than me2, the meson energy is fairly well defined 
as positive if y ~ me2. With this value of y, the uncertainty in 
the time at which the meson is created, as measured by the 
width of the maximum in is of the order of h/mc2.
Thus, the causality condition cannot restrict the propagation 
properties of the meson to within a distance any smaller than 
~ ch/me2 = h/mc. This is a rather reasonable result, since we 
frequently think of the Compton wavelength as some sort of 
extension of the meson.
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The uncertainty in spatial location of the points of meson 
creation and destruction docs not play a role in the above dis­
cussion, since this may in principle be reduced indefinitely bv 
decreasing the range and increasing the depth of the potential 
well. For example, for a squarewell potential, of range R and 
depth Vo, the nucleon wave function for energy En is appreciable 
only for r</? + |/—fi2/2d/Fn. For an s-state, this distance is 
much less than the meson Compton wavelength if Vo » (zn/Jf)mc2.

Although the previous measuring process contains the essential 
elements necessary to ascertain the causal or acausal behaviour, 
a major objection may be raised to it. This is that the nucleon 
was not described by a quantized field, but rather was assumed 
to obey a non-relativistic Schrödinger equation. The main reason 
tor doing this was that we wished to consider nucleons in bound 
states, but still avoid some of the difficulties which occur in pre­
sent-day treatments of bound-state problems. Particular dif­
ficulties may be encountered in applying theories with non­
local interaction to bound states.On the other hand, our 
principal goal is to investigate the properties of a non-local 
interaction between two quantized fields, thus replacing one of 
the fields by an effective “source distribution’’, for the other 
field certainly limits the scope of our discussion.

Instead of arguing, as previously, that the non-local effects 
may be described completely by an altered meson Green’s 
function, we may propose a second process in which both nucleon 
and meson are treated as quantized fields. Accordingly, a scat­
tering problem involving nucleons in states of energy greater 
than Me2 will now be considered. As remarked previously, it is 
necessary to introduce an additional interaction to permit the 
emission and absorption of non-virtual mesons. We shall choose 
this additional interaction to be with the electromagnetic field, 
thus involving only the nucleons and not the neutral mesons. 
The electromagnetic field will not be treated as an external 
field, but rather as being quantized according to the usual theory. 
Il is necessary, however, to assume that this nucleon-photon 
interaction is local, to avoid difficulties with both the gauge 
invariance and the construction of the S-matrix.

The particular measuring experiment is illustrated sche­
matically in Fig. 1. We consider that initially we have two 
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nucleons and one photon, each described by wave packets 
containing only positive frequencies. The packets of nucleon 1 
and the photon appear to intersect (“collide”) in a region 7?x in 
space and time. The packet of the other nucleon, nucleon 2, 
passes through a second region, 7?2, well separated from 7?1. We

Fig. 1.

look for transitions to a final state in which we again have two 
nucleons and a photon, but with nucleon 2 and the photon now 
coming from 7Ç, and nucleon 1 from 7?1. The interpretation is 
then that nucleon 1 has absorbed the photon, transferring this 
energy to the other nucleon by the exchange of a meson, the 
energy of this meson finally appearing in the photon emitted by 
nucleon 2. If all the wave packets are chosen to be minimum 
packets in cither 7?r or R2, and if the photons and corresponding 
nucleons do not have approximately the same direction of 
motion, then the photon absorption and emission must take 
place in and around 7?T and 7?2, respectively. An analysis of the 
Compton effect shows then that the nucleon must lose its ex­
citation energy by meson or photon emission within a region of 
dimensions of the order of magnitude of h/Mc. This is also 
ensured if the initial and final state wave packets of nucleons 
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1 and 2 are chosen so that they only overlap in regions Rr and 
/?2> respectively. Then to the extent to which the regions of inter­
section, Rx and R2, are well defined, the emission of the meson 
and its subsequent absorption occur in R± and R2. But if the 
energies of both the photons are positive, then the meson going 
from 7?1 to R2 must have a positive energy, and our causality 
condition requires that the region R2 must lie on or within the 
forward light cone of R±.

Now let us turn to a description of the process by our field 
theory. We choose as the action 1

I ~ (æ) + \ d4.r (æ) + (I (123) ( 1 - 3), (3.14)

where is the usual free-iield Lagrangian density for a system 
of mesons, nucleons, and the electromagnetic field, described 
by operators y; ip “ ; Afl, respectively. The meson-nucleon 
interaction density is taken as

A/ (123) = —f//2 [y>+(l)<?(2)y(3) —y>(l)y(2)y>+(3)]F(123), (3.15)

and the interaction of the nucleon with the electromagnetic field 
is described by

¿EM (æ) - ie/2 [y)+ (,r) y^A^ (,r) y> (.r) — y> (.r) A^y^ (,r)]. (3.16)

A perturbation expansion for the S-matrix element for the 
process may be found by introducing a type of interaction re­
presentation, in which only the nucleon-photon interaction is 
chosen for Hint. That is, the state vector in our interaction re­
presentation, is related to that vector in the Heisenberg 
representation with which it coincides at /0, Y7),, by

(0 = i> exp-i\dt'\d*x'H EM(x')
•’to •'

(3.17)

with P denoting the time-ordered product. We put h = c = 1. 
The N-matrix expressed in terms of operators in this repre­
sentation may be found by the method of Källen(8) and Yang 
and Feldman<9\ It is then possible lo write down the S-matrix 
in the Heisenberg representation, remembering that the Green’s
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function transforms as the product of two field operators at 
different space-time points. In the perturbation expansion, (he 
lowest order terms which have non-vanishing matrix elements 

between the states considered (each with two nucleons and one 
photon) will be of order e2 or e2g2 in the coupling constants. 
The terms of order e2p2 in the matrix element are of two types,

depending on whether the two photons interact with different or 
with the same nucleon. Sample graphs corresponding to these 
two types arc shown in Figs. 2 and 3. The other graphs differ 
only in regard to which one or two of the particular nucleon 
line or lines the photon line is attached. An exception to this

Dan. Mat.Fys.Medd. 29, no.2. 2 
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are the disconnected graphs, which correspond to no meson 
exchange; these give a contribution only because the initial and 
final states chosen l’or a particular nucleon are not orthogonal. 
These contributions, which include all those from terms of order e2, 
will be essentially negligible if the change in the mean momentum 
of one of the nucleons is large compared to the spread of 
momenta in the nucleon wave packet. Similarly, terms cor­
responding to graphs of the type shown in Fig. 3 refer to pro­
cesses in which the meson involved is virtual. Contributions 
from these may also be shown to be negligible unless Rr and /?2 
are separated by a distance less than fi/inc. In fact, with the 
restricted type of form factor in which we are particularly in­
terested, these terms are identically zero. We are thus left only 
with graphs such as shown in Fig. 2. One part of the matrix 
element for the particular graph illustrated is

7 = e272/8 \d (1 . . . 8) F (123) F (456) V’(t (7) Ar/ (7) yvS (7 — 1 ) 

X (2 — 5) (3) y>c+ (4) 5 (6 — 8) Afie (8) yflipa (8), 

in which i/)a and ipb are the initial state wave functions of nucleons 
1 and 2, and and ipd are the final state wave functions. The 
other parts differ only by permutations of the initial and final 
state wave functions. The initial and final state potentials of the 
electromagnetic field are denoted by A¡ie and Av¡. Here again 
AF (,r) is the Feynman Green’s function for the meson field. 
The essential propagation properties of the meson field are 
rooted in AF and in the form factors.

The wave functions ^(t, ipc, and A^ie refer to particles which 
pass through region Rlf whereas y>h, y)d, and Avf describe particles 
passing through R2. If we denote by .Vj the midpoint of the region 
Rlt and by ,r2 the midpoint of 7?2, then we may define new trans­
lated wave functions ip' by the conditions

O) = Va (æ + æi) 

y' (æ) = ipc (x + æx) 

A fie (æ) — ^fie (æ T æl)

O) = Vb O + æ2)

(æ) = Vd O + æ2)

Ar/ (,r) = Avf (,r + x2).

(3.19)

Then, the primed wave functions should all be in the form of 
packets passing through the origin; that is, at time t = 0 they 
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should be minimum packets with center at x = 0. The matrix 
element (3.18) may be written more simply in terms of the 
Fourier transforms of the wave packets and Green’s functions. 
The wave functions are expanded as

Va GO = (2 si) 2 ( <llk na (k) 1 Ó (A2 + .1/2) exp i k ■ x,

A' (X) = (2 si)“2 V ( d‘k N' (k) «„ (A) 1±£<L> 6 (A2) exp ik-x, 
r=l,2.’ 2

(3.20)

with similar formulas holding for the other functions. Here,
(k) is a unit vector in the direction of polarization r, and, as 

a consequence of the supplementary condition on the potentials,

^N¿(A) = 0, r = 1,2, (3.21)

for transverse polarizations r = 1,2. The functions va must 
satisfy

ó (À-2 + A/2) (y^ + iM) va = 0. (3.22)

Using the expansions (1.2) and (3.20) for the form function and 
the wave functions, we obtain

I = e^/s J d‘k (A) M2 (A) (i) exp i k ■ (x2 - x.), (3.23)

with

V, (A) = (2 ,)-» J Z »t (*.  + «.- A) r„

X 0« (*i)  («!> l±h*l)  l±£hl> 1 ±¿0'1+_x12Lp

X ó (A2 + J/2) ó (z,)2 6 [Å-, + z, - A)2 + J/2] G (A, + z, - k, - k, - z,) ;

(3.24)

14 (A) = (2 sr)“3 j d‘k2 d^Z^’r "S

< t,b (A, + z2 - A) ar/ (z2) 1±e M 1+QA2--A + *2)

< ó (kl + A/2) Ô (x“) ó [(k2 — k + x2)2 + Af2] G (k2 + x2 — k2, - x2 + k) ; ,

(3.25)

and
(A) = — 2 z (2 tt)-2 [A2 + Af2 ze]“1.

2*
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In general, the form of d/1 (7¿) and 472 (//) will depend upon 
the particular choice ol the form factor in momentum space, 
G(Jlf an(l on the form of the wave packets selected. How­
ever, two properties of considerable importance for our purposes 
may be deduced without further specialization. The first of these 
is that

.V, (Å) = .V2 (O = <> for (3.27)

which means that only the positive frequency components of 
dj,' (Å’) need enter into our analysis. Of course, (3.27) does not 
eliminate contributions from space-like vectors k with k° < 0, 
but such vectors may all be transformed into vectors with positive 
frequency components by proper Lorentz transformations. We 
shall in fact later require that the propagation Green’s function 
be such that the virtual particles described by k2 > 0 give only 
short-range effects.

Consider the definition (3.24) for 3/1(Â>). The integrals con­
tain a factor

å (kf+M*)  ó (x?) i | - k-y+1 + c (kl) 1 '■ f( ’ '-+-c a\+ _ k)
2 2 2

= ô (7»q + 7I/2) <5 (x^) Ô [k2 2 Âq • xr — 2 k ■ -f xx)]

1 +£ (7q) 1 +e (xx) 1 + e (Aq + xx— k)

(3.28

But if a and b are two time-like vectors, a -b is positive if a° and b° 
are of opposite signs, and negative if they are of the same sign. 
Hence,

F + 2 Åq-xx — 2 Á -(Áq + xx) < 0 (3.29)

for all vectors k such that k2 < 0, k° < 0. Thus, for these vectors 
the d-function is always zero, and the integral vanishes identically. 
A similar argument holds for d/2 (7t ). Therefore, our integration 
in (3.23) only need go over space-like vectors k, and over time­
like vectors with 7<°>0.

The second general property of Mx (Á) and M2 (A) deals with 
their smoothness when considered as functions of the vector k; 
that is, the continuity of their derivatives of a given order with 
respect to k. It may be shown that, if G (Zx, Z3) and the various 
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functions u(/<),ar(x) are sufficiently smooth, and n is any 
finite positive integer, then the derivatives of Jíj (Á) and M2 (k) 
with respect to k and of nth order are continuous everywhere, 
except possibly at k2 = 0. This is not a completely trivial pro­
perty, for the presence of the product of the various ¿-functions 
might be thought to introduce discontinuities in some higher 
order. For example, the integral

a
I (cd) = \dx\dyô(x-}~y — cc) (3.30)

Jo *'o

docs not possess a continuous first derivative I' (a) everywhere. 
In our case, the integral (k) is actually an integral over a 
five-dimensional surface embedded in the eight-dimensional 
space spanned by kl/bl, This surface is formed by the inter­
section of the surfaces

¿? + 3/2 = 0, ^ = 0, ]
(3.31)

(kr + k)2 + M2 = 0, J

and depends upon k as a parameter. The desired smoothness 
results from the fact that the vectors and xlfl depend upon 
the five independent variables of the surface and on the para­
meter k in a continuous manner, a condition which is not met 
for (3.30). For the proof, it is necessary, among other points, 
to show that the equations (3.31) have a solution for all values 
of k2 > 0 and of k2 < 0, k° > 0. This means that mesons of all 
momenta are to be involved in the matrix element (3.23).

With these properties in mind, and with reference to the 
matrix clement (3.23), we see that our causality condition takes 
a particularly simple form. It is: if q (k) = (k) M2 (k) vanishes
for k2 ( 0, k° ( 0, and possesses only discontinuities in its deriv­
atives corresponding to those of the form factors entering into 
its definition, then the integral

7 = e2g2/8 \ d*k  o (k) AF (k) exp i k-(x2 — Xj)

must be essentially different from zero only if x2 is on or within 
the forward light cone of The relation of this condition to 
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that obtained from our previous measuring process, expressed 
in (3.9), is now apparent.

We are fairly sure of the validity of the use of a perturbation 
expansion to describe the interaction of the nucleon Avith the 
electromagnetic field, but it is a much more doubtful technique 
for treating the meson-nucleon interaction. It would certainly be 
desirable to know the effect of terms of higher order in g2 on 
the matrix clement, in the very least. Some of these terms will 
refer to processes such as the creation and annihilation of virtual 
nucleon-anti-nucleon pairs by the meson field. Neglecting the 
possibility of an interaction of these nucleons with the electro­
magnetic field, these pairs may presumably be removed by some 
sort of renormalization. In any case, their only effect will be to 
modify somewhat the propagation function AF (k) appearing in 
(3.23). Since it introduces no more difficulty, we shall henceforth 
anticipate this modification, and replace AF (Å) by some effective 
Green’s function AF (k). Other terms will refer to nucleon self­
energy effects and may involve the electromagnetic field in a 
rather complicated manner. Nevertheless, it is easy to see that 
such effects do not in essence change the argument. However, 
one type of term which is definitely not included in our con­
siderations is the meson analogue of the radiative corrections to 
scattering. These essentially replace the meson-nucleon vertices 
in Figs. 2 and 3 by some complicated vertex parts. We shall not 
discuss the effects of such processes here, save to remark that 
in a certain sense, for our purposes, they may be equivalent 
to modifying the form factor F (123) somewhat. Whether or not 
they affect the causality properties depends to a certain extent 
upon the conditions which we obtain for F (123).

4. Asymptotic Expansion of the Integral.

We have seen that our causality condition requires a knowledge 
of the behaviour of the integral

/(.r) = J o (Á-) zl^ (Á-) exp i k-x (4.1)

for J X I yy l/m. In this section, we shall determine the properties 
of this integral in terms of the properties of AF (7c) and the func- 
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tion g (k). It should be noted first that the singularities of the 
integrand can be of two major types, First, the function AF (k) 
may introduce either poles or distributed singularities cul­
minating in branch points. Thus the zeroth order term in a 
perturbation expansion of AF, which is just Feynman’s AF, has 
simple poles at k° = ± | k2 + m2 T z’e, e)> (). Furthermore, the 
function g (k) may have discontinuities in either itself, or in its 
derivatives. We introduce here the requirement that G l3) 
may possess such discontinuities only along the surfaces q = 0, 
/ß = 0, or (/1 + Z3)2 = 0. Then the discontinuities of o (k) will 
be limited to the surface k2 = 0.

It is possible to separate these two types of singularities into 
different terms. For example, the function q (7c) (k2 + in2 — z'e)—1 
may be written as

g(k,k°) _[ Q(k,k°) g(k,kL) Q(k,k°+) 1
Tm2^7e “ 7c2Tm2 - ie ~ (k°^kL) (7c(; - 7¿J ~ (Á^l1’ ) (Ál^Pj

; (4.2) 
ß(k.k°_-) e(k,k°)

(k’-kL'XA.-kk) '

where
Ä’°± = ± | ^2 + ;n2T ie (4.3)

Then the term in brackets in (4.2) no longer possesses the poles 
at k° — k°+ or k{L, while the second and third terms do not have 
the discontinuities of q (k). Distributed singularities may be 
handled in the same manner, save that now the coefficients of 
the subtracted terms should be otherwise analytic functions 
which coincide with o (k) AF (7c) along the branch cut. After this 
is performed, the function q (7c) AF (k) may be written as the 
sum of two functions, f (k) and g (k), in which f (k) has no 
singular points other than the discontinuities of q (k), and g (k) 
has only poles and branch points corresponding to those of 
zip (7c). Furthermore, g (k) can have no singularities in the 
region k2 < 0, Á’0 < 0, for here q (7c) = 0, and the coefficients of 
the subtracted terms must be zero. We now may consider 
the Fourier transforms of the two functions f(k) and g (k) sepa- 
ratelv.
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(4.4)

(4.5)
Im

,•>00

(4.6)

(4-7)

'Filen

F > Á'02;+ »

V = o

— 9

where

(4-9)

L

k2 < Á-02; 
k° > O ;

Á’2 < Á02; 
F<0 ;

(4.8)

It is convenient to expand I1 (.r) in spherical harmonics, obtaining 

P (x) = f/(2 71«) Z i‘ Yr (» > V) Ilm 0. æ") .

derivatives of order A7 + 1, for any finite N.

An asymptotic expansion for (r, æ°) may be obtained by a 
method which is a slight generalization of that given by Willis(10). 
If flm (k, k°) is square integrable, then we may write

£2.7? v (0,0) kn~° kOv + Ri

"~vv (0,0) kn~v kOv + Rn-i Â

> rl’

.^/(À-,À-o),

where
!,lm (r, x°) = i dk k'+ 1 j, (kr) ( dk« flm (k, Å») exp - ik«x«,

<-’() — 00

f(k) = Z YI“ (»k, <pk) flm (k, k«) k1-1.
Im

We know that, save on the surface k2 = k02, f (k, k°) possesses 
continuous 
we have

N —1
(í-, k°) = y

n = 0

= Ä l<"~rk',v + R- + ,

Ö

Consider first the integral

/i (æ) = (9 ^)-2 J d*k  f (k) exp i k-x.

— V C 
dk^ 

dn — v
+ v'’ * "

cfl — V r\V
f2.~^(0,0) = L I. °1 °f(k,k«).

k2^k02—k°->()~Ok Ok

f"~vv(o,O) = L L
k2->k?2—k0 + 0 ■+

, X
Iim (r, .t°) = L L \ dk kl + 1./) (kr) exp — ark 

al -> 0 cc2 -+■ O^O
,t00

X \ dk« flm (k, k-0) exp [— ik«x« — «211» I ].
•/---- 00
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The use of the subscript plus and minus signs is in cognizance 
of the fact that the derivatives of the function f(k, Á’°) may be 
discontinuous across the surface Æ2 = Å02. The remainders in 
(4.8) may be written as

-4- °<^<!• (4-i())
N ! ——' \ V /

j, = o x 7

If we introduce

C« — V rjV 
and denote n~-v—v<p («i«2) by (pn~v v («x«2),

O «i 0a2

we have

= L L
«,->0 a2->0

+ fl\vv (0,0 V v + f-~v v (0,0) ^-vv (axa2)] + /U.

The remainder here is given by

= y [C+ ^.-rv (aia2) + C_+<p^-vv («,«,) + C__ ^z’”(a1«3)]; (4.13) 
V = 0

Im (r, x°)
1(—'}n n I 'n\ 2. (") ir+~VV (°’0) " (',,K2)

the coefficients C may be shown to be finite if fN~vv js of bounded 
variation. We shall henceforth make this assumption. All that 
remains in order to obtain an asymptotic expansion for (r, .r°) 
is to evaluate the coefficients <pn~vv («1«2). bi general, this can 
be done only in terms of an infinite series in either r/x° or x°/r, 
according as r is less than or greater than | x° |. We find, for 
r > I x° I,
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= 2Z+1 (—Z)n + 1r-

n — vvs \ — V V / \ rn — v v / \
<P + {a1a2)=~(p_+ («i«2) — ----

= y — o+’Ikm’ _ (.r»/;.y
(2 cr — zi H-r) er ! (2 cr — zi — 1)!V /7 

<T > 2 (H + 1)

(4.14)

in which only terms of order n'i, have been retained. If I¡m 
is rewritten as

- (0,0)] + ç,!-”” (ßl«2) irz’”’ (0,0) - (0,0)]} + fiN,

we see that (r, x°) decreases in a space-like direction more 
rapidly than n—’ ~‘3if fn~vv (k ,k°) is continuous across the surface 
k2  ¿02 ypg coefficient of the term of order f~n in an asymptotic 
expansion is thus of the order of magnitude of the discontinuity 
in the n-4th derivative of q (k). This agrees with a simple cal­
culation of the effect of a discontinuous form factor upon the 
propagation of signals.

Similarly, if |.r°|>r, we have

n —v v 
r— + = 2,+1 (-)'(+ /)"
g,n~V V = 2Z + 1 (_y- r æO-n-Z-3

<? + («1«2> n — v V / \(P— + Ve 1^2) n — r r z X_ Ç9------ (^1^2) >

\ "" (Z4~ g) ! (2 cr + 2/ +n + 1) ! .
___  (2o + 2/ + n-v + 2)(g)!(2ff + 2/+l)!v '' 
O’ = 0

(4.16

In this case, (r, x°) decreases in a time-like direction more 
rapidly than x0 —n —z —3 if fn~vv (k, k°) is continuous across the 
light cone.

The case of r == | .r° |, that is, on the light cone itself, requires 
special attention. For r = | ,r° |, neither the infinite scries in 
(4.14), nor that in (4.16), converges, and hence our method for 
obtaining the asymptotic expansion breaks down. We might argue 
on physical grounds that the indeterminacy of the behaviour 
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on the exact surface r = a>0, which is of zero measure, should 
introduce no difficulty. A more carefid analysis, however, re­
quires that we examine the behaviour of the integral of I (r, .r°) 
taken over some small volume clement spanning the light cone, 
in the limit in which this clement is located far from the origin. 
If this is done, we see immediately that at worst the decrease 
with distance from the origin goes only as r~n~2, for functions 
with discontinuities in the nth derivative. Thus no real problem 
is presented by this singular case.

The continuity of the derivatives of and hence of
f (k, k°), may be related to the continuity of the derivatives of 
G (Zx, Z3) with respect to (Zx + Z3)2 = k2. We are particularly 
interested in the case where G (Zx, Z3) vanishes for (Zx + Z3)2 
greater than zero. For this type of form factor, q (k) will have 
derivatives of order 2n continuous across the surface k2 = 0, 
if G Z3) has derivatives with respect to (Zx + Z3)2 of order n 
which are continuous across (Zx + Z3)2 = 0. The factor two 
arises from the fact that q (k) contains the product of two form 
factors. The discontinuities in the derivatives of the other factors 
in M1 (k) and J/2 (k) will play no part if the first n derivatives 
of G (Zx, Z3) with respect to (Zx + Z3)2 are zero al (/x + Z3)2 = 0, 
as they must be if G is to vanish identically for Zx + Z3 space-like.

Thus far we have been concerned only with the integral I1. 
The discussion of the Fourier transform of g (k),

I2 (,r) = (2 d4kg (k) exp ik-x, (4.17)

is fortunately very simple. We have already remarked that g (k) 
contains only singularities in the regions k2<0, k° > 0, and 
k2 > 0. If these singularities all lie in the lower half of the complex 
k° plane, then I2 (.r) vanishes for ,t° < 0. Similarly, if they lie 
in the upper half plane, then I2 (,r) vanishes for .r° > 0. This 
follows directly from an evaluation of I2 as a contour integral 
in the complex k° plane, a procedure justified by the meromorphic 
nature of g (k). Thus, in order that /2 (,r2 — ;rx) give contributions 
only for .r2 within or on the forward light cone of a* x, it is necessary 
that g (k) should have poles only at points k° — K°, where 
Ini K° < 0 if Re K° >0. If we had arranged conditions so that the 
meson absorption occurred at .xx and its emission at .r2, then 
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the requirement would have been Im K° > 0 if Re K° < 0. How­
ever, since the sign of k° may be changed by a Lorentz trans­
formation only if |à'°|<|â|, then our requirements also become 
sufficient if we demand further that no singularities exist with 
Re K° < I k I. Since poles a finite distance from the real axis give 
rise to terms which are damped exponentially, the above re­
striction should only involve those poles near this axis.

The results of the analysis presented in this section may be 
summarized as follows. Suppose that the singularities of the 
propagation function A'f (k) lie in the second and fourth quadrants 
of the complex k° plane, and at least a distance k from the 
imaginary axis, and that the function q (k) has continuous 
derivatives of the first n orders. Then the integral I (x2— Xj) is 
composed of two terms, one of which is different from zero only 
for (x2— xx)2 < 0, x2— x*i  ) 0, and the other of which decreases 
in any space-like direction or time-like direction more rapidly 
than the inverse n + 4 power of | xx — x21 or x[— x2, respectively. 
Furthermore, the decrease of this second term along the surface 
I x° J — r is sufficiently rapid so that its integral with respect to 
x2 over some small region centered at < x2 > decreases as 
|xi —- < x2 > |n + 3.

5. Discussion.

The results of the previous section point out rather clearly 
the distinction between the work of Fierz, and that of Bloch and 
of Chrétien and Peierls. The basis of the argument of Fierz is 
that, save for a part which damps out rather rapidly, the positive 
frequency part of the Feynman Green’s function AF propagates 
only into the forward light cone. The part which damps out is 
unobservable due to the complementarity existing between time 
and energy. This result is essentially dependent upon the location 
of the poles of I he propagation function in the complex k° plane. 
By the analysis given here, we find that our integral I2, which 
is obtained from a process selecting only positive frequency 
components of the propagation function, also represents a signal 
propagating only into the forward light cone. The difference 
between the analysis of Fierz and ours is that the unobservable 
damped-out term he obtains is, in our case, included in the 
integral I1.
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The analyses of Bloch and Chretien and Peierls, on the 
other hand, are mainly concerned with the effect of discontinuities 
in the form factor. We have found it convenient to include such 
discontinuities in the integral I1. It might be suspected, then, that 
their analyses are in some way comparable to that which we 
gave for I1. This is true in a formal sense if we generalize the 
interpretation given to the “source function’’ introduced by 
Chrétien and Peierls. The physical interpretation given to their 
integral containing the form function is considerably different 
from that which we have attached to ours, however. A type of 
connection between the two may be established, nonetheless. 
For this purpose we define a four-point “form factor’’, F (1346),by

F(1346 = Jd(25) F(123) dp (2 — 5) F (456), (5.1)

in which dp (2 — 5) is just that part of the propagation function 
remaining after subtracting off the singularities, in lhe manner 
of the last section. Then we may say that our demonstration 
that I1 (a-2 — æj) decreases rapidly with increasing distance 
J x2 — xx I or æ2 — *rt is somewhat equivalent to showing that 
F (1346) decreases rapidly as the distance from the points 1 and
3 to lhe points 4 and 6 increases. More exactly, and following 
the notation of Chrétien and Peierls, we show that, for functions 
cp (46) which are appreciably different from zero only when
4 and 6 are near the origin, (p (13) decreases as a certain inverse 
power of the distance of 1 and 3 from the origin, where <p> (13) 
is defined by

£ (13) = jjd(46) F (1346) cp (46). (5.2)

We found that the power of decrease of (13) depended upon 
the degree of smoothness of the Fourier transform of F (1346). 
Written in this manner, lhe similarity between our investigation 
of F and the investigation by Chrétien and Peierls of the function 

ÿ(13) = b/(2)f(123)<?(2) (5.3)

is rather obvious. The different methods used for obtaining con­
ditions on the asymptotic expansions is purely a matter of pre­
ference. In view of this similarity, it is not surprising that sub- 
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stantially the same condition is obtained here as was obtained 
by Chrétien and Peierls.

It seems fairly clear that, for a field theory with non-local 
interaction, two rather different types of conditions are obtained, 
both of which must be satisfied for causal behaviour. The first 
relates to the location of singularities, demanding that they occur 
only in the second and fourth quadrants in the k° plane, and at 
least a distance |ä| from the imaginary axis. This type of con­
dition must also be satisfied for a local theory. In practice it 
restricts the particular choice of a Green’s function.

The presence of a non-local interaction, however, introduces 
an additional amount of freedom into the theory, by means of 
the form function G (l}, l3), which is not completely determined. 
This in turn creates the possibility for introducing discontinuous 
factors into the integrands of the integrals giving matrix elements 
for certain processes. These discontinuities will in general give 
rise to a type of acausal behaviour, unless the function G (Zx, /3), 
considered as a function of the variables /f, /3, (lx + Z3)2, is 
sufficiently smooth. The probability for observing signals trans­
mitted with velocities greater than that of light decreases essentially 
more rapidly than an inverse 4 + 6 power of the spatial distance 
between the points of observation, if the G function has continuous 
deriviatives of the nth order.

The particular problem which we encounter in practice is 
that we wish, for reasons of convergence, to use form factors 
which vanish if either /{, Z3 or (l± + /3)2 is greater than zero. 
Certainly then G may not be an analytic function of these variables. 
On the other hand, we may construct a G fidfilling these con­
ditions, and yet possessing continuous derivatives of any pre­
assigned finite order. Thus we may require (he “acausal signals” 
to decrease more rapidly than as any pre-assigned finite inverse 
power. This is the extent to which causality may be preserved 
in our theory with non-local interaction.

The author is deeply indebted to Professor C. Møller, mag. 
scient. P. Kristensen, and Dr. R. Haag for many helpful discus­
sions and suggestions on this problem. He wishes to express his 
gratitude to Professor Niels Bohr for extending the hospitality of 
his institute during the time this work was performed.
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